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The idea behind the general theory of ‘hydraulic’-type problems as described by Gill 
(1977) is applied to an inertial boundary current. The flow considered is a single- 
layer inviscid fluid flowing under gravity along a rotating, irregular wall. It is shown 
that owing to variations in the curvature of the wall the boundary current may be 
controlled in the hydraulic sense at  sections along the wall classified as ‘bays’. It is 
also shown that because of such variations in geometry the flow can be ‘blocked’. 
The behaviour of the flow in response to variations in the bottom topography, such 
as a varying lateral slope or a broad-crested weir, is discussed with particular reference 
to conditions under which the flow is either controlled or blocked. 

1. Introduction 
Recently there has been a renewed interest in ‘hydraulic’-type problems with 

special emphasis on rotational effects, cf. Stern (1972, 1974, 1976), Whitehead, 
Leetmaa & Knox (1974), Sambuco & Whitehead (1976)) Gill (1977) and Shen (1978). 
The investigations reported have been directed at the problem adopted from non- 
rotating hydraulics (Rouse 1961) under which conditions the flow is hydraulically 
controlled, i.e. to the question of whether a given downstream geometry is sufficient 
to  calculate one of the upstream parameters (such as the discharge rate or upstream 
height). 

In  a recent paper Gill (1977) addressed himself to the ‘hydraulic ’-type problem in 
fairly general terms and applied the general theory for flow of an inviscid single-layer 
fluid in a rotating channel for the case of uniform potential vorticity. Because of the 
rotation the free surface may have quite a large cross-stream tilt. His analysis shows 
in fact that the flow may be separated from the left wallt upstream. Thus because of 
rotation there exists a family of possible upstream states where the surface of the 
fluid intersects the bottom so that the stream occupies only a part of the channel, 
leaving the remainder of the channel floor dry. For such flows the left wall is super- 
fluous and may be removed, in which case the flow assumes the characteristics of an 
inertial boundary current. 

Although the analysis of Gill (1977) implicitly includes some discussion of an inertial 
boundary current, he did not address himself to the problem as such. Moreover, 
important geometrical features, such as curvature of the right wall, which in general 

t Left and right is relative to the direction of the mean flow, which also defines the downstream 
direction. 
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require the solution to a nonlinear differential equation, and lateral bottom topography 
were neglected. It is felt therefore that such features should be included. 

The very existence of this boundary current depends on the choice of upstream 
parameters (of which there are three for the case of uniform potential vorticity) and 
therefore consideration of the upstream state is included in a separate section (5  3). 
This section also conveniently serves the purpose of introducing the concepts involved 
and some of the notation. 

The flow to be considered is a forced flow, but it has some bearing on the problem 
of a free discharge. If, because of changes in the downstream geometry, a solution 
to the forced flow does not exist, then in a real flow a shock or other phenomenon 
beyond the bounds of the theory would presumably occur. However, in a free discharge, 
such a phenomenon may propagate upstream and thereby alter the upstream para- 
meters accordingly (i.e. hydraulic control). 

The behaviour of an inertial boundary current in response to coastline irregularities 
is considered. The analysis reveals that, besides the possibility of controlled flow 
solutions, regions close to  the wall are formed downstream from where the flow is 
blocked, in the sense that no streamline originating upstream enters this blocked 
region. For instance, if a unidirectional flow stagnates at the wall, a streamline leaves 
the wall at this point and a region of reversed flow close to the wall, with streamlines 
originating downstream, is created. Such a flow is not physically meaningful within 
the context of the present theory since i t  necessitates information about the down- 
stream flow. The blocking was not discussed by Gill (1977) since this feature is not 
present when only topographic variations with downstream distance are considered. 
Blocking is also recognized if the fluid depth goes to zero at the wall, with the flow 
separating from the wall downstream of this point. This blocking, however, is purely 
a matter of description because the distinction between wall and bottom is only 
meaningful when they intersect. 

The flow considered consists of a single-layer inviscid fluid of uniform density 
flowing under gravity along a rotating irregular, vertical wall and over a varying 
topography. However, the theory is easily extended to yield resuIts for a two-layer 
system where one of the layers is quiescent, in which case gravity is replaced by 
‘reduced gravity’ (e.g. Stern 1976). In  5 2 the equations for flow in a boundary current 
relative to a curvilinear co-ordinate system are established. In  $3 4 and 5 the depen- 
dence of the flow on bottom topography variations and coastline irregularities is 
discussed. The flow may be thought to be either a dense body of water flowing along 
a continental margin underneath a less dense stagnant fluid, or a surface boundary- 
layer current such as the Norwegian Coastal Current or the East Greenland Current. 
In  9 6 some examples of flow along irregular walls are depicted to help visualize the 
dependence of the flow variables on wall irregularities. 

2. Equations for flow in a boundary current 
Consider the case of a homogeneous, incompressible, inviscid fluid bounded laterally 

by a vertical wall to the right of the direction of the mean flow and which rotates 
about the vertical axis with uniform angular velocity 3 f. The motion will be described 
relative to a curvilinear co-ordinate system (s, n, z) in the rotating frame, with the z 
axis pointing vertically upwards and the s and n co-ordinate directions along and 
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FIGURE I .  Sketch of the co-ordinate system and the symbols used in the text. 

normal to the wall respectively. The fluid is bounded by the bottom, z = -D(s,n),  
and the free surface, z = h'(s, n). Thus the height of a fluid column is 

h = h'+D.  (2.1) 

(2.2) 

A convenient choice of reference level ( z  = 0 )  is the bottom level far upstream (s + - 00) 

at the wall, i.e. 

Figure 1 shows the system and the symbols as defined above. The flow will be assumed 
to be a boundary current and accordingly solutions for h will be sought such that, for 
a certain lateral distance, n = w(s), from the walI, h = 0. The solutions are therefore 
subject to the condition 

where the subscript 1 from here on denotes evaluation of that quantity at  the free 
streamline, n = w(s). The subscript r will be used to denote evaluation a t  the supporting 
wall, n = 0. The determination of the position of the free streamline will be an integral 
part of the problem. The analysis is restricted to the case of uniform potential vorticity 
and the governing equations are those of Gill ( 1977). Let g be the gravitational accelera- 
tion and u and v the velocities along and normal to the wall, respectively. Then the 
governing equations take the following form in the curvilinear system: 

D( - co, 0 )  = 0. 

h, = h(s,w) = 0, (2.3) 

and 

-la+ u +f = f h P o  --+ I + -  --- 
an au ( ;) as p+n 
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Here p is the radius of curvature of the wall and is a function of 8 only. The sign con- 
vention is such that p is positive at capes and negative a t  bays. Q is the total discharge 
rate or volume flux. The stream function @ is defined by 

such that @ = Q at the wall and @ = 0 a t  the free streamline. The constant Ho is the 
fluid depth at  points where the relative vorticity is zero and the constant H, the sur- 
face elevation at  the wall at  points where the velocity is zero. 

Non-dimensional vaxiables are defined by 

(2.9) 

(2.10) 

is the Rossby radius of deformation based on the potential vorticity height, Ho. D, 
and us are depth and velocity scales, respectively, based on mass continuity and geo- 
strophic balance, namely 

A typical absolute value of the radius of curvature is denoted by ps and A, is a typical 
length over which the variables vary with downstream distance. From mass con- 
tinuity requirements i t  follows that the relative scaling of u and v is such that 

1 P = 8/hs, .Fz = n/w,, = u/us, 0 = v/v,, 

B = PIP,, $ = @I&, I3 = DID,, 8 = w/ws, 
A = h/D,, 

where w, = 2(9HO)Vf 

u s  = (if Q/Ho)*, 0 8  = (9fQIg)'. (2.11) 

h,v, = w,u,. (2.12) 

There are four dimensionless parameters which enter the problem and they will be 
denoted by 

and 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

The first two, Am and f i r ,  are interpreted as upstream parameters and are similar to 
the upstream parameters of Gill (1977). The last two, 3 and P ,  are introduced because 
of the curvature of the wall and provide a measure of the relative importance of the 
radius of curvature compared to the radius of deformation and the streamwise length 
over which the variables vary, respectively. With these definitions (2.4)-(2.7) become 

(2.17) 

(2.18) 

= 2(Am-A), (2.19) 
a 

8 + 2-1B 



Hydraulically driven currents 399 

The solutions to these equations are subject to the conditions 

and 

$=l, 6=0, 

$ = o ,  a = @  
a = o ,  f i=& 

(2.21) 

(2.22) 

(2.23) 

As is customary in hydraulic-type problems, variations with downstream distance 
are assumed to, be on a scale large compared to variations across the stream, i.e. 
A, @ w, or 

32-1 < 1. (2.24) 

Accordingly the bracketed terms in (2.17)-(2.20) will be neglected hereafter. Thus 
the equations decouple and they can be solved for each section 8 = constant inde- 
pendently. Note that if (2.24) holds true and 2 -+ 00, these equations reduce (except 
for notational discrepancies) to the equations of Gill (1977). This is to be expected, 
since large 2 entails that variations with downstream distance because of wall cur- 
vature are small compared to the effects of other geometrical variations such as a 
varying bottom topography. 

3. The upstream flow 
Now consider the upstream flow or the flow as s + -m (the circumflexes will be 

dropped from here on, except in the parameters La, fir  and R).  In  order to keep the 
upstream flow as simple as possible, i t  will be assumed that p-1 and D both tend to 
zero in the limit 8 + --oo (i.e. a straight wall and flat bottom). The equations above 
then correspond to those of Gill ’( 1977) and the solutions can be written in the form 

cosh (w - 2n) 
cosh w 

sinh (w - 2n) 
-I- sinhw ’ (3.1) h-h, = (1-h,) 

sinh (w - 2n) cosh (w - 2n) 
cosh ‘10 sinhw . u = (1-L,) + 

The width of the flow satisfies the equation 

t-2+t2(1 -Q+ 2(1 +ha) - 2L, Ar = 0, (3.3) 

where t = tanh w. (3.4) 

There are two useful numbers which characterize the flow and they will be referred 
to later in the analysis. These are the Froude number F ,  defined by 

F = U / ( U - C ) ,  

r = 6u/U. and a number r defined by 

Here c is the phase speed of long wave disturbances. An overbar denotes the average 
of the values at  the wall and at the free streamline and a 6 before the variable is used 
to denote half the difference between the values a t  the lateral boundaries. If F > 1, 
the flow is called supercritical and for F < 1 the flow is subcritical. The number r is 
indicative of how much the velocity varies across the stream. If 1.1 < 1, the flow is 
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FIUVRE 2. The solid aurve shows the relation between the upstream parameters fir and h, for 
an infinitely wide current upstream (equation (3.3)]. Below 8, = 2.0 and < 2/hm++hm, 
h, < 2.0 there is no upstream solution. For hm > 2 and 8, < 2/hm + +hm, there are two possible 
solutions, one subcritical, with F < 1 and T < -1, and one supercritical, with F > 1 and 
T > - 1. For 8, > 2/hm++fLm there is only one solution, which is supercritical, with F > 1 

hcm 

m d r >  -1. 

unidirectional and positive whereas r = - 1 indicates that u is zero at  the wall (block- 
ing). Proceeding as Gill (1977) we obtain for the two numbers the upstream values 

P-2 = t2[(l-t2)hm+t2] (3.7) 

and r = t 2 ( 1  -Am). (3.8) 

In  order to obtain a visualization of the possible upstream states figure 2 is con- 
structed. The curves for constant t2 were obtained by solving (3.3) with respect to 
19, and plotting 19, as a function of 8, for given t2. In  the region 

6- > 2, 2 < 14, < h-12 + 2/hw, (3.9) 

two solutions exist for which 0 < t2 c 1. The first is subcritical (F < 1) and has a 
relatively large width and a layer close to the wall where the velocity is negative 
(r < - 1). The second is supercritical (F > 1)’ is relatively narrow in width and has 
unidirectional flow (- 1 < r < 0). For values of I?, larger than 

fl, = 2/hm + h J 2 ,  (3.10) 

which corresponds to the curve t2 = 1 of figure 2, there is only one solution for which 
t 2  < 1. This solution is supercritical and unidirectional. The ‘critical’ value (3.10) 
represents an upper bound on A, in order for the subcritical inertial boundary current 
to exist. If l?,, exceeds this value, a subcritical upstream flow does exist, but in that 
case the fluid wets both walls of an infinitely wide channel, cf. Gill (1977). There is 
also a lower bound on fir  below which no solutions to (3.3) exist. By (3.2) and (3.3) it 
follows that 

u: = 2Lm(l?,, - 2) (3.11) 

and in order to have real values of the velocity at  the wall fir  2 2. The different regions 
and charactmisties of the solutions are summarized in figure 2, 
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The realization of the subcritical upstream flow seems doubtful because of its two- 
way flow structure. The supercritical one, however, can easily be realized by appli- 
cation of the theory by Gill (1977) to flow in a rotating channel. If the exit channel 
has slowly varying width and/or depth, the flow is controlled and hence separates 
from the left wall into a unidirectional boundary current along the right wall down- 
stream, Nevertheless, both types of upstream flows will be discussed below. 

If F = 1 or if the phase speed of long-wave disturbances is zero upstream, the flow 
is controlled. Let the subscript c denote controlled flow solutions. Then (3 .7 )  gives 

tZ(1 -Em) = - 1, (3.12) 

which means that r = - 1 , i.e. that the flow has a stagnation point at  the wall. Blocking 
is recognized if the flow exhibits this feature and therefore even an infinitesimal change 
in the downstream curvature may cause the flow to be blocked (cf. $ 5  below). 

4. Dependence of the flow on bottom topography variations 
The upstream flow of 9 3 will now be assumed to encounter a slowly varying geo- 

metry in that the depth and the curvature vary slowly with downstream distance, 
i.e. (2 .24 )  holds true. The governing differential equations are linear o i  nonlinear 
depending on whether or not the wall has irregularities. If the wall is fairly straight, 
so that 2 is a large number, the equations become linear; this case will be treated first. 
Moreover, it  conveniently serves the purpose of illuminating in a simple way the 
condition for hydraulic control and the blocking feature. 

The topography to be discussed below is chosen to be 

D = 2an + Do, 14.1) 

where the steepness coefficient a and the weir height Do are functions of the down- 
stream co-ordinate such that both a and Do tend to zero far upstream. The choice 
of a linear lateral slope is highly unrealistic for application purposes. Howerer, it is 
thought to contain most of the important ingredients for an understanding of the 
behaviour of an inertial boundary current exposed to a varying lateral bottom 
topography. 

In order to obtain an expression which relates the flow variables to the geometry, 
the procedure of Gill (1977) is followed. When the terms of order 2-l are neglected in 
(2.17)-(2.20),  the expressions for the fluid depth and velocity become 

A cosh (w - 2n)  sinh (w - 2n)  
sinh w h - i ,  = (%-h,) + Sh 

cosh w 

sinh (w - 2n)  cosh (w - 2n)  
sinhw ’ and = coshw + Sh 

where 

The width of the flow is determined by the equation 

E = Sh = &hr = [ l -a&,(w- t )+f (a t )2]~-~at .  

(a+$)2+ t z (8h-k , )2+2[1  +km(8h-aw- Do)] -  2&,& = 0.  
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For a = Do = 0 this equation reduces to (3.3) and is therefore consistent with the 
upstream flow. The Froude number and the number r become 

and (4.7) 

Equation (4.5) relates the flow properties to geometry in that it gives the flow variable 
t as a function of the two geometric variables a and Do and the two upstream parameters 

For given geometry, a ( s )  and Do@) will be specified, so there will be a specified 
relation between a and Do. Substituting in (4.4) and ( 4 4 ,  a curve relating t to a. 
(or Do) can be obtained once the upstream parameters &,, and 19,. are specified. Figure 
3 provides an example of such curves for zero weir height (Do = 0) and variable 
steepness, for &, = 4.0. The curves were obtained by solving (4.5) with respect to 8,., 
after (4.4) has been used to express ah, and by plotting contours of 8,. in the t ,  plane. 
Here 

(4.8) 

has been used to cover the total range of possible a values. All the curves have two 
branches or more, which reflects the non-linearity of the Bernoulli equation (2.20). 
The locus of all the turning-points coincides with the curve F = 1.  This curve is ob- 
tained by solving (4.6) with respect to t using an iterative procedure (Newton- 

and fir. 

2 $ = - arctan a 
?r 
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Raphson). To the upper left of this curve the flows are subcritical (F < 1) and to the 
lower right they are supercritical. Inside the looped curve r = - 1 the flow has a 
reversed flow layer in the vicinity of the wall. 

It turns out that the curves displayed on figure 3 are similar to those which 
relate the flow variables to the curvature ( 9  5). To prepare the way for the dis- 
cussion of more complex curvature effects on inertial boundary currents, i t  is 
useful first to discuss the curves relating the flow variables to bottom topography 
variations. 

If a = 0 the only geometric variable is Do. However, this case has been discussed 
by Gill (1977) and is therefore omitted here. It is interesting to note, however, that 
in this case the controlled flow and the blocking of the flow coincide so a discussion 
of the blocking feature as a separate phenomenon is impossible. 

Suppose for instance that the minimum value of p is - 0.15 (a N - 0.24) and that 
the flow upstream is subcritical (look a t  the curve fir = 2.4 for which t N 0.95 up- 
stream). As p decreases, the width decreases to its value a t  the constriction (t  2: 0.72) 
without intersecting the curve r = - 1, i.e. there is always a reversed flow close to 
the wall. Downstream of the constriction, /3 increases again. The only continuous 
solution is the one obtained by retracing the same curve back to ,8 = 0. For smaller 
values of fir (fir = 2.2) the curve r = - 1 is intersected (p E - 0.13, t N 0.58) before 
the constriction, so the flow approaching the constriction is unidirectional and sub- 
critical. As the curve is retraced back towards /3 = 0 downstream of the constriction, 
the width increases again until the point where the flow stagnates at  the wall 
(j3 N - 0.13) is reached. At this point a streamline leaves the wall and, ifpis increased 
further downstream, a reversed flow close to the wall is created with streamlines 
originating downstream (blocked flow). However, a necessary condition for the solu- 
tion to  be physically meaningful is that every streamline can be retraced back to 
upstream infinity. Thus, the above-created reversed flow is outside the scope of the 
present theory and the solution breaks down a t  this point. 

For smaller values of fir  the solution may be discussed in a similar manner until a 
curve is reached which has a branch point at  j3 = - 0.15. For this ‘critical’ value of 
fir a change of branch is possible at the constriction. If this occurs the width continues 
to decrease even though j3 is increasing downstream of the constriction. The essential 
properties of these curves are the branching structure, which allows for hydraulic 
control, and the intersection of the curves with the curve r = - 1,  which allows the 
flow to have a stagnation point at the wall at sections which do not coincide with the 
controlled section. 

The section a t  which control occurs can be found a priori. This is due to the fact 
that the locus of all the turning-points or branch points coincide with the ‘critical’ 
curve F = 1. Thus there is a way of determining the control section without specifying 
the upstream parameters. In  fact this gives a relationship between the upstream 
parameters which has to be satisfied in order to have controlled flow solutions. How- 
ever, no such feature is present at  the intersection of the curves with the stagnation 
curve r = - 1.  Hence, no relationship between the upstream parameters emerges in 
this case. The event can however involve breakdown of the theory as described above. 
This point will be returned to in $6. 
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5. Dependence of the flow variables on wall irregularities 
Consider now that the wall has a non-zero curvature and that D = 0 (flat bottom) 

downstream, i.e. the flow encounters either a bay or a cape. If the characteristic 
downstream radius of curvature ps is large compared to the radius of deformation, 
the parameter & is large (small curvature). A formal expansion of the dependent 
variables in terms of this parameter is then possible, viz. 

However, if fi - 1 (i.e. the bay or cape has a radius of curvature of order 1 radius 
of deformation) such an approach is impossible. The governing differential equations 
then in general become nonlinear, which makes them difficult to handle analytically. 

Small curvature approach 

The zero-order terms in the expansion (5.1) are the upstream solution as described 
in 5 3. Thus for sufficiently small curvatures the upstream values of the flow variables 
are conserved downstream or, in the presence of a varying bottom topography, behave 
as described in 0 4. The next order in (5.1) therefore contains information about the 
dependence of the flow variables on curvature. 

Substituting (5.1) in (2.17)-(2.20) and collecting terms of order 2-l gives the follow- 
ing equations : 

(5.2) 
u -- 2h,v,= -ttmx, ah1 

O as 

and uou,+hmhl= ~ 1 ,  (5.5) 

(5.6) 

and h, -2w,u, = 0, n = w,. (5.7) 

subject to the conditions 
$, = 0, n = O,w, 

Proceeding as Gill (1977), the governing equation in terms of ph, becomes 
na 

where 

Equation (5.8) is solved in the appendix. The deviation from the upstream width 
times the radius of curvature can be written in the form 

pw, = (F$ - 1)-l G(to; Am, f i r ) .  (5.10) 

Thus the deviation from the upstream width is proportional to (Fg- l)-l and hence, 
for non-zero values of the function G, becomes large (of order fi) for upstream para- 
meter values close to those of controlled and blocked upstream flows, so the formal 

F(nj = 2u,[ 1 - 2&1(h,, - &) 3. (5.9) 
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expansion (5.1) breaks down a t  this point. Moreover, pwI changes sign for Fo = 1, so, 
if for given values of Am and I?,. the subcritical flow shrinks at bays, the supercritical 
flow widens (assuming that G conserves its sign). The behaviour of the flow is dis- 
cussed further below where effects of large curvatures are considered and where the 
equations are solved by a numerical method. 

Large curvatures 
When fi is of order 1 there is no point in making a distinction between ps and w, 
in (2.9). In  that case all terms in (2.17)-(2.20) are of equal order (except those in 
brackets). Note that if one assumes that h^, is large (in which case a large family of 
subcritical upstream flows exist, cf. $3)  and that p is of order 1 or larger, linear 
differential equations are obtained since the nonlinear ageostrophic term in (2.18) 
becomes small (of order The resulting linear but ageostrophic differential equa- 
tion for the fluid depth can be shown to be the governing equation for the modified 
Bessel functions of order zero (Abramowitz & Stegun 1964, 9 9.6). By application of 
the procedure described in Gill (1977), it is possible to obtain an equation relating 
the flow variables to the curvature for this case. Below follows, however, a solution of 
(2.17)-(2.20) by a numerical method (Runge-Kutta) which covers the whole range 
of possible upstream parameter values. A discussion of large Am is, therefore, deferred. 

If a new variable c is introduced to substitute for n, namely 

$ = w - n ,  
(2.18) and (2.19) become (fi = 1)  

(5.11) 

dh/dc = 2~ - u % ~ l ( p  + w - &I, (5.12) 

and du/dc = 2(h - Em) + ~ ( p  + w - c)-’. (5.13) 

The solution to these equations is subject to three conditions, namely (2.21), (2.22) 
and(2.23). Combinationof (2.20), (2.22)and(2.23)givestwo ‘initial’ (6 = 0)  conditions, 
namely 

h = 0, u = (2LmI?,.-4)*, 5 = 0, (5.14), (5.15) 

where the sign corresponds to a positive value of u a t  the free streamline (a negative 
vaIue of u a t  the free streamline is not consistent with the upstream condition). For 
given values of Lm and I?,., (5.12) and (5.13) are solved to give profiles of surface ele- 
vation and velocity at  any specified section p = constant and for any specified width w. 
Now, by combination of (2.20) and (2.21), the third condition to be satisfied becomes 

jjU2+Lm(h-I?r) = 0, 5 = w, (5.16) 

which corresponds to satisfying the Bernoulli equation (2.20) at the wall. In general 
the solution to (5.12) and (5.13) subject to (5.14) and (5.15) does not satisfy (5.16). 
Nevertheless, by applying an iterative procedure (e.g. Newton-Raphson), curves 
like those depicted in figure 4 for Em = 4.0 are obtained for which all three conditions 
are satisfied. The figure is constructed in much the same way as figure 3. The quantity 
t ,  = tanh (p-l)  is introduced to cover the infinite range of possible curvatures. 

Because of the singularity for E = p + w, introduced by the ageostrophic terms in 
(5.12) and (5.13), a restriction is imposed on w versus p. Now 0 < 5 c w, so the 
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FIQURE 4. Examples of curves relating the flow variable t ,  the hyperbolic tangent of the width, 
to the geometric parameter tp ,  the hyperbolic tangent of the curvature of the wall. The bottom 
in this oase is flat. As in figure 3, hm = 4.0, and the broken lines F = 1 and r = - 1 have the 
same interpretation. 

singularity is avoided if, for negative values of p, i.e. at bays, the width is less than 
the absolute value of the radius of curvature, i.e., if 

w < lpl, p < 0. (5.17) 

The dotted region of figure 4 corresponds to  values which do not satisfy this require- 
ment. 

The curves obtained in this way are similar to those of figure 3 and may be discussed 
in the way described in $4.  The essential property of these curves, which allow for 
hydraulic control, is the existence of two branches. The sections along the coast, 
which serve as constrictions in the hydraulic sense, are those classified as bays (p < 0). 
The branching structure of the curves is present for all values of the upstream para- 
meter h,. 

For reasonable curvatures the curves are strikingly parallel and horizontal in the 
supercritical domain (i.e. to the lower right of the locus of turning-points). This feature 
is present for all values of&,, but is predominant for larger values of gm, except close 
to  the branch points. Thus for supercritical flows the dependence of the flow variables 
on wall irregularities is in general weak. 

All subcritical upstream flows, i.e. flows for which the upstream parameters satisfy 
(3.9) and F < 1,  decrease their width at  bay sections and increase their width at  cape 
sections. For supercritical flows, however, there exists a ‘critical’ value of f i r  (obtained 
by setting the function G of (5.10) to zero). For fir less than this critical value, the 
width at bays (capes) tends to increase (decrease) but tends to decrease (increase) 
if fir is greater than this value (look a t  the curves fir = 2.2 and I?, = 2.4 for which 
t = 0.40 and t = 0.35 upstream respectively). 

The blocking feature, in that the flow stagnates at  the supporting wall as described 
in $ 4, is also present (shown by the curve T = - 1 of figure 4). The control section and 
the section for which the flow is blocked are not clearly separated. If a supercritical 

A 
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FIGURE 5. The solid curves show the relaGon between the flow variable t and the geometric 
parameter t p  for flows which satisfy h, = H,., i.e. flows which in the upptream basin are entirely 
along the left wall. The variable upstream parameter is the flow rate Q = #.fQ/gH,2 = hz2. 

flow goes subcritical at  a bay constriction, the flow becomes blocked shortly down- 
stream of the constriction and the solution breaks down. The second blocking feature, 
for which the flow separates from the supporting wall (not depicted in figure 4), occurs 
for very large curvatures a t  cape sections only, e.g. for gm = 4.0 and = 2.4, the 
flow separates €or p = 0.23 (tP > 0.999). The curvature effects are further discussed 
in $$6 and 7 below. 

6.  Some sample configurations 
The controlled channel flows discussed by Gill (1977) and verified experimentally 

by Shen (1978) all predict downstream flows entirely along the right wall. The stream 
occupies only a part of the channel downstream and so has an effective width less than 
the channel width, i.e. the remainder of the channel floor will be dry. This kind of 
flow meets the requirements of the present theory and the evolution of the flow down- 
stream of the control section of the channel is then determined by the results of $ 5  
above. According to Gill (1 977), the most useful application of the theory of the channel 
flows occurs when the flow in the upstream basin is entirely along the left wall. In 
that case the fluid depth in the undisturbed part of the basin is kept at its initial level. 
Then the potential vorticity height and the Bernoulli height. are equal, in which case 
the upstream parameters f i , and 8, are also equal. The flow is then specified by two 
dimensional upstream parameters only, namely the discharge Q and the fluid depth 
in the quiescent part of the upstream basin. Downstream of the control section, where 
the flow separates from the left wall, the present t'heory applies. The results, for the 
case when the right wall has irregularities, are depicted in figure 5 in contours of 
the non-dimensional discharge rate 
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FIOURE 6. Controlled flow solution showing the width aa viewed from above and selected 
profiles of fluid depth and velocity of an inertial boundary current flowing along a arabolic 
wall. The flow is determined by the upstream parameters which are fi, = 4.0 and &. = 2.1. 
The profiles are at sections z = - 5.0, - 0.09 and + 5.0 which correspond to radii of curvatures 
p/p,  = - 28.08, - 2 4 6  and - 28.88. The bottom is flat in this case, at level zero. The minimum 
radius of curvature is p/p. = - 2-45 at x = 0 where the flow branches. 

According to $3,  there is an upper bound to the discharge in order for the inertial 
boundary current to exist, and it follows from (3.10) that 

4 <*, (6.2) 

in confirmation of the results by Gill (1977). The dashed curve, which intersects the 
contours at  the branching-points, corresponds to flows controlled by the bay con- 
striction (F = 1). Figure 5 has some straightforward properties; for instance, the 
discharge decreases as the curvature increases at  the control section. 

Figure 6 gives an idea of how the flow properties change as the flow encounters a 
bay. Since the scaling introduced in $ 2 is not fixed for a fixed geometry, it is convenient 
to discuss figure 6 in terms of dimensional quantities. For this purpose, let x and y 
be a Cartesian co-ordinate system chosen such that the irregular wall is given by the 

(6.3) 
formula 

where a is a constant. Then 
(0.4) 

f ( X ) / P S  = 8 4 X / P J 2 ,  

PlP, = - a-lC 1 + (~/Ps)21'. 
To construct the controlled flow solution of figure 6, the constant a is tuned such 

that for the specified values of hm and fi,, the minimum value of Ip/p,( (i.e. for x = 0 )  
equals the corresponding branch point value. The displayed width, x, y and the lateral 
co-ordinate n are all scaled by ps, whereas the fluid depth h and the velocity u are 
scaled by 

respectively. The plot is for krn = 4.0 and fir = 2.1, which gives a fairly high potential 
vorticity. Three profiles of fluid depths and velocity are shown at three different 
sections: the upstream section, the section at  which the current stagnates a t  the wall 

(6.5) 4 = ( fPs/4)2 /g ,  us = fP8 /8 ,  
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and the downstream section. Upstream the flow is subcritical and has a reversed flow 
close to the wall. This structure remains downstream. However, the reversed flow 
layer becomes thinner and finally vanishes a t  the section where the flow stagnates at  
the wall. Thus, some of the flow towards the bay has returned via the reversed flow 
layer (c. 17%). The flow which approaches the head of the bay is therefore uni- 
directional. Here, the flow branches and continues as a narrow, unidirectional and 
supercritical flow downstream of the head of the bay. 

Figure 6 can also be interpreted mirrored, i.e. the upstream flow may be the super- 
critical one. Interpreted this way the flow is blocked shortly after the control section 
and the solution breaks down. Presumably a kind of turbulent motion, possibly in 
the form of a hydraulic jump, occurs and propagates upstream. However, it  cannot 
propagate upstream of the constriction where the flow is supercritical. The ‘jump) 
is, therefore, stationary and situated a t  the constriction. Downstream of the jump 
an organized motion possibly reappears; this can be computed by applying the usual 
discontinuity conditions a t  the jump, i.e. conservation of momentum and discharge. 
Further sample configurations are discussed below. 

7. Discussion 
The analysis -above shows some steady solutions for an inertial boundary current 

bounded by a rotating wall to the right of the direction of the mean flow. The response 
of this flow to changes in the wall curvature and bottom configuration is investigated. 
The investigation does not give information about how such a flow might be set up, 
or indeed whether such a current would ever be set up from given initial conditions. 
However, as mentioned in the introduction the present theory might help to answer 
some important questions concerning coastal currents or deep currents along conti- 
nental shelves in the oceans. 

(i) May a coastal current be controlled by wall irregularities, or 
(ii) is it possible to block the current by such irregularities? 
(iii) How large curvature is required a t  a cape in order for a boundary current to 

separate from its supporting wall, or 
(iv) does the width of the current decrease or increase at sections along the coast 

where there is a cape (or a bay)? 
Problems (i) and (ii) have been discussed in 3 6 above and depicted in figure 6. It was 
shown that a bay of sufficiently large curvature may control the flow in the hydraulic 
sense. A bay also provides a blocking mechanism for the inertial boundary current. 
The pertinent discussion of problems (iii) and (iv) may be found in $6.  In  order to 
translate these results into a picture of a flow, figure 7 is constructed. In figure 7 (a )  
a subcritical flow encounters a sinusoidal wall as shown. The width of the flow is seen 
to increase at capes and decrease at  bays. The accompanying reversed flow layer 
behaves accordingly. As the width decreases the flow accelerates in order to keep up 
with the constant discharge rate. Figure 7 ( b )  illustrates a supercritical flow which 
encounters a cape. The cape has a radius of curvature which is too small for the flow 
to be able to follow. Thus the whole fluid separates from its supporting wall, at which 
point the theory breaks down. The little ‘bump’ at the head of the bay appears since 
the radius of curvature of the bay is so small that the flow nearly branches there. 

The assumptions made in reaching these conclusions may seem too rough to make 
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FIQ- 7. Sample oonfigurations of flows along an irregular wall. The flow is viewed from above. 
Also shown are selected profiles ?f fluid depth and velocity. The upstream parameters are 
h, = 4.0 and (a) fir = 2.2 and (b) H, = 2.4. In  (a) the wall is sinusoidal, i.e.f(s) = p,sin (z /p,J2)  
and the flow is subcritical. In this case a reversed flow layer close to the wall appears. In (b) 
the wall is given by the formulaf(s) = p, exp ( - K Z ' / ~ : ) ,  where K = 2.2, and the flow is super- 
oritioal. For explanation of the symbols see $6. For further details see $7. 
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useful inferences to actual oceanic cases. For instance, the one-layer assumption, 
which can be overcome in a two-layer model if one of the layers is quiescent, is not 
relevant in most shallow coastal waters, where there usually are two distinct layers 
which both move. However, regarding the possibility of controlled flows at bays, it  is 
interesting to note that the outlined features shown in figure 6 are similar to the coarse 
features, observed by Sundby (1978), of the inlout flow of surface waters in the Vest- 
fjorden, i.e. a broad two-way stream enters the fjord a t  one side and leaves as an in- 
tense unidirectional stream a t  the other side. 

The flows discussed in the present paper are all boundary currents supported by 
a wall to the right of the direction of the mean flow (Northern Hemisphere). However, 
as some exploratory investigations have shown, the method used above is also applic- 
able to flows in inertial boundary layers supported by a wall to the left of the direction 
of the mean flow. This kind of model may give insight into problems pertaining to 
separation and possible blocking of western boundary currents such as the Gulf Stream. 

Appendix 

standard method of variation of parameters the solution can be written 
Equation (5.8) is the generating equation for hyperbolic functions. Using the 

Here I(n) = - F(E) sinh 2(n - 5) d<, : s," 
where F(<) is given by (5.9). By applying ( 5 4 ,  (5.6) and (5.7) 

The function G is given by 
pwl = (Pi - l)-l G(to; A,,,, I?,.). 

where 

and 

WA, 4&, ro + ( 18 - 3A,) A, - 16 c --+ - 4t0 1 2 im(  1 - t i )  

W c -- (1  +T,,) (3&, - 1 - ro)  + 1 - t i  
12A,( 1 - t i )  2 - 4t,(l - y o ) +  
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